Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Eur J Neurol ; : e16309, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656662

BACKGROUND AND PURPOSE: Spinal muscular atrophy (SMA) is a rare and progressive neuromuscular disorder with varying severity levels. The aim of the study was to calculate minimal clinically important difference (MCID), minimal detectable change (MDC), and values for the Hammersmith Functional Motor Scale Expanded (HFMSE) in an untreated international SMA cohort. METHODS: The study employed two distinct methods. MDC was calculated using distribution-based approaches to consider standard error of measurement and effect size change in a population of 321 patients (176 SMA II and 145 SMA III), allowing for stratification based on age and function. MCID was assessed using anchor-based methods (receiver operating characteristic [ROC] curve analysis and standard error) on 76 patients (52 SMA II and 24 SMA III) for whom the 12-month HFMSE could be anchored to a caregiver-reported clinical perception questionnaire. RESULTS: With both approaches, SMA type II and type III patients had different profiles. The MCID, using ROC analysis, identified optimal cutoff points of -2 for type II and -4 for type III patients, whereas using the standard error we found the optimal cutoff points to be 1.5 for improvement and -3.2 for deterioration. Furthermore, distribution-based methods uncovered varying values across age and functional status subgroups within each SMA type. CONCLUSIONS: These results emphasize that the interpretation of a single MCID or MDC value obtained in large cohorts with different functional status needs to be made with caution, especially when these may be used to assess possible responses to new therapies.

2.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Article En | MEDLINE | ID: mdl-38429495

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Muscular Diseases , Zebrafish , Animals , Humans , Male , Connectin/genetics , Connectin/metabolism , Muscle, Skeletal , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Mutation , Zebrafish/genetics
3.
J Neuromuscul Dis ; 11(3): 665-677, 2024.
Article En | MEDLINE | ID: mdl-38427497

Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder characterised by progressive motor function decline. Motor function is assessed using several functional outcome measures including the Revised Hammersmith Scale (RHS). Objective: In this study, we present longitudinal trajectories for the RHS in an international cohort of 149 untreated paediatric SMA 2 and 3 patients (across 531 assessments collected between March 2015 and July 2019). Methods: We contextualise these trajectories using both the Hammersmith Functional Motor Scale Expanded (HFMSE) and Revised Upper Limb Module (RULM). At baseline, this cohort included 50% females and 15% of patients had undergone spinal fusion surgery. Patient trajectories were modelled using a natural cubic spline with age, sex, and random effects for each patient. Results: RHS and HFMSE scores show similar trends over time in this cohort not receiving disease modifying therapies. The results confirm the strong correlation between the RHS and RULM previously observed in SMA types 2 and 3a. Scoliosis surgery is associated with a reduction of 3 points in the RHS, 4.5 points in the HFMSE for the SMA 2 population, and a reduction of 11.8 points in the RHS, and 13.4 points in the HFMSE for the SMA 3a populations. When comparing the RHS and RULM, there is a lower correlation in the type 3a's than the type 2 patients. In the SMA 2 population, there is no significant difference between the sexes in either the RHS or HFMSE trajectories. There is no significant difference in the RULM trajectory in the SMA 2 or 3a participants by sex. Conclusions: This study demonstrates that the RHS could be used in conjunction with other functional measures such as the RULM to holistically detect SMA disease progression. This will assist with fully understanding changes that occur with treatments, further defining trajectories and therapy outcomes.


Spinal Muscular Atrophies of Childhood , Humans , Female , Male , Spinal Muscular Atrophies of Childhood/physiopathology , Spinal Muscular Atrophies of Childhood/therapy , Child , Child, Preschool , Adolescent , Disease Progression , Cohort Studies , Severity of Illness Index , Longitudinal Studies , Scoliosis/therapy , Scoliosis/physiopathology , Spinal Fusion , Infant
4.
medRxiv ; 2024 Feb 11.
Article En | MEDLINE | ID: mdl-38370827

Background: Weakness of facial, ocular, and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca 2+ homeostasis can contribute to disease pathology. Methods: We analysed exome and genome sequencing data from three unrelated individuals with congenital myopathy characterised by striking facial, ocular, and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-seq data of one proband and performed gene expression outlier analysis in 129 samples. Results: The three probands had remarkably similar clinical presentation with prominent facial, ocular, and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but most prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatiguability. While muscle biopsy on light microscopy did not show any obvious morphological abnormalities, ultrastructural analysis showed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum. DNA sequencing identified three unique homozygous loss of function variants in JPH1 , encoding junctophilin-1 in the three families; a stop-gain (c.354C>A; p.Tyr118*) and two frameshift (c.373del p.Asp125Thrfs*30 and c.1738del; p.Leu580Trpfs*16) variants. Muscle RNA-seq showed strong downregulation of JPH1 in the F3 proband. Conclusions: Junctophilin-1 is critical to the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of JPH1 results in a congenital myopathy with prominent facial, bulbar and ocular involvement. Key message: This study identified novel homozygous loss-of-function variants in the JPH1 gene, linking them to a unique form of congenital myopathy characterised by severe facial and ocular symptoms. Our research sheds light on the critical impact on junctophilin-1 function in skeletal muscle triad junction formation and the consequences of its disruption resulting in a myopathic phenotype. What is already known on this topic: Previous studies have shown that pathogenic variants in genes encoding triad proteins lead to various myopathic phenotypes, with clinical presentations often involving muscle weakness and myopathic facies. The triad structure is essential for excitation-contraction (EC) coupling and calcium homeostasis and is a key element in muscle physiology. What this study adds and how this study might affect research practice or policy: This study establishes that homozygous loss-of-function mutations in JPH1 cause a congenital myopathy predominantly affecting facial and ocular muscles. This study also provides clinical insights that may aid the clinicians in diagnosing similar genetically unresolved cases.

5.
Sci Rep ; 14(1): 3365, 2024 02 09.
Article En | MEDLINE | ID: mdl-38336890

Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.


Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/pathology , Muscular Atrophy/metabolism , Muscles/metabolism , Collagen/metabolism , Disease Progression , Image Cytometry , Muscle, Skeletal/metabolism
6.
J Neuromuscul Dis ; 11(2): 361-368, 2024.
Article En | MEDLINE | ID: mdl-38189761

Background: Spinal muscular atrophy (SMA) is a progressive neuromuscular disease caused by mutations in Survival motor neuron 1 (SMN1) gene, leading to reduction in survival motor neuron protein (SMN), key for motor neuron survival and function in the brainstem and spinal cord. Risdiplam is an orally administered SMN2-splicing modifier which increases production of functional SMN protein. Risdiplam was offered in the UK under early access to medicines scheme (EAMS) to SMA type 1 and 2 patients aged 2 months and older, not suitable for authorised treatments from September 2020 to December 2021. Objective: To describe the largest paediatric European real-world set of data on patients' characteristics and short-term safety for risdiplam in Great Britain through EAMS. Methods: We collated data from SMA REACH UK a national clinical and research network for all patients enrolled onto EAMS and assessed all submitted adverse events. Results: Of the 92 patients; 78% were Type 2 SMA, mean age 10.9 years, range 0-17 years. 56 were treatment naïve, 33 previously treated; of these 25 had received nusinersen, 3 previous treatment unknown. Sixty adverse events (AEs) were reported occurring in 34 patients. The commonest were respiratory tract infections and gastrointestinal disturbance. Four life-threatening events were reported with 2 deaths and permanent cessation of risdiplam in 3 patients.Overall, 38/60 AEs were considered unrelated to risdiplam, 10/60 related to risdiplam and for 12/60 causality not specified. Conclusions: This study found a safety profile similar to clinical trials with no new safety concerns identified. With the restricted eligibility of onasemnogene abeparvovec and complications of nusinersen administration, EAMS allowed access or continued treatment to naïve patients or patients no longer suitable for approved medications. Collection of longitudinal data for this complex population is needed, to provide greater insights into risdiplam's role in addressing patients' needs into the future.


Azo Compounds , Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Humans , Child , Infant, Newborn , Infant , Child, Preschool , Adolescent , United Kingdom , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Spinal Muscular Atrophies of Childhood/drug therapy , Pyrimidines/adverse effects
7.
Neuromuscul Disord ; 35: 42-52, 2024 Feb.
Article En | MEDLINE | ID: mdl-38061948

The Myotubular and Centronuclear Myopathy Registry is an international research database containing key longitudinal data on a diverse and growing cohort of individuals affected by this group of rare and ultra-rare neuromuscular conditions. It can inform and support all areas of translational research including epidemiological and natural history studies, clinical trial feasibility planning, recruitment for clinical trials or other research studies, stand-alone clinical studies, standards of care development, and provision of real-world evidence data. For ten years, it has also served as a valuable communications tool and provided a link between the scientific and patient communities. With the anticipated advent of disease-modifying therapies for these conditions, the registry is a key resource for the generation of post-authorisation data for regulatory decision-making, real world evidence, and patient-reported outcome measures. In this paper we present some key data from the current 444 registered individuals with the following genotype split: MTM1 n=270, DNM2 n=42, BIN1 n=4, TTN n=4, RYR1 n=12, other n=4, unknown n=108. The data presented are consistent with the current literature and the common understanding of a strong genotype/phenotype correlations in CNM, most notably the data supports the current knowledge that XLMTM is typically the most severe form of CNM. Additionally, we outline the ways in which the registry supports research, and, more generally, the importance of continuous investment and development to maintain the relevance of registries for all stakeholders. Further information on the registry and contact details are available on the registry website at www.mtmcnmregistry.org.


Muscle, Skeletal , Myopathies, Structural, Congenital , Humans , Translational Research, Biomedical , Dynamin II/genetics , Genotype , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy
8.
Brain ; 147(2): 414-426, 2024 02 01.
Article En | MEDLINE | ID: mdl-37703328

Facioscapulohumeral dystrophy (FSHD) has a unique genetic aetiology resulting in partial chromatin relaxation of the D4Z4 macrosatellite repeat array on 4qter. This D4Z4 chromatin relaxation facilitates inappropriate expression of the transcription factor DUX4 in skeletal muscle. DUX4 is encoded by a retrogene that is embedded within the distal region of the D4Z4 repeat array. In the European population, the D4Z4 repeat array is usually organized in a single array that ranges between 8 and 100 units. D4Z4 chromatin relaxation and DUX4 derepression in FSHD is most often caused by repeat array contraction to 1-10 units (FSHD1) or by a digenic mechanism requiring pathogenic variants in a D4Z4 chromatin repressor like SMCHD1, combined with a repeat array between 8 and 20 units (FSHD2). With a prevalence of 1.5% in the European population, in cis duplications of the D4Z4 repeat array, where two adjacent D4Z4 arrays are interrupted by a spacer sequence, are relatively common but their relationship to FSHD is not well understood. In cis duplication alleles were shown to be pathogenic in FSHD2 patients; however, there is inconsistent evidence for the necessity of an SMCHD1 mutation for disease development. To explore the pathogenic nature of these alleles we compared in cis duplication alleles in FSHD patients with or without pathogenic SMCHD1 variant. For both groups we showed duplication-allele-specific DUX4 expression. We studied these alleles in detail using pulsed-field gel electrophoresis-based Southern blotting and molecular combing, emphasizing the challenges in the characterization of these rearrangements. Nanopore sequencing was instrumental to study the composition and methylation of the duplicated D4Z4 repeat arrays and to identify the breakpoints and the spacer sequence between the arrays. By comparing the composition of the D4Z4 repeat array of in cis duplication alleles in both groups, we found that specific combinations of proximal and distal repeat array sizes determine their pathogenicity. Supported by our algorithm to predict pathogenicity, diagnostic laboratories should now be furnished to accurately interpret these in cis D4Z4 repeat array duplications, alleles that can easily be missed in routine settings.


Muscular Dystrophy, Facioscapulohumeral , Humans , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Alleles , Chromosomal Proteins, Non-Histone/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Chromatin
9.
Neurol Clin Pract ; 14(1): e200224, 2024 Feb.
Article En | MEDLINE | ID: mdl-38107546

Background and Objectives: Spinal muscular atrophy (SMA) is a neurodegenerative disorder manifesting with progressive muscle weakness and atrophy. SMA type 1 used to be fatal within the first 2 years of life, but is now treatable with therapies targeting splicing modification and gene replacement. Nusinersen, risdiplam, and onasemnogene abeparvovec-xioi improve survival, motor strength, endurance, and ability to thrive, allowing many patients to potentially attain a normal life; all have been recently approved by major regulatory agencies. Although these therapies have revolutionized the world of SMA, they are associated with a high economic burden, and access to these therapies is limited in some countries. The primary objective of this study was to compare the availability and implementation of treatment of SMA from different regions of the world. Methods: In this qualitative study, we surveyed health care providers from 21 countries regarding their experiences caring for patients with SMA. The main outcome measures were provider survey responses on newborn screening, drug availability/access, barriers to treatment, and related questions. Results: Twenty-four providers from 21 countries with decades of experience (mean 26 years) in treating patients with SMA responded to the survey. Nusinersen was the most available therapy for SMA. Our survey showed that while genetic testing is usually available, newborn screening is still unavailable in many countries. The provider-reported treatment cost also varied between countries, and economic burden was a major barrier in treating patients with SMA. Discussion: Overall, this survey highlights the global inequality in managing patients with SMA. The spread of newborn screening is essential in ensuring improved access to care for patients with SMA. With the advancement of neurotherapeutics, more genetic diseases will soon be treatable, and addressing the global inequality in clinical care will require novel approaches to mitigate such inequality in the future.

10.
Cell Death Dis ; 14(9): 596, 2023 09 07.
Article En | MEDLINE | ID: mdl-37673877

Duchenne muscular dystrophy is a genetic disease produced by mutations in the dystrophin gene characterized by early onset muscle weakness leading to severe and irreversible disability. The cellular and molecular consequences of the lack of dystrophin in humans are only partially known, which is crucial for the development of new therapies aiming to slow or stop the progression of the disease. Here we have analyzed quadriceps muscle biopsies of seven DMD patients aged 2 to 4 years old and five age and gender matched controls using single nuclei RNA sequencing (snRNAseq) and correlated the results obtained with clinical data. SnRNAseq identified significant differences in the proportion of cell population present in the muscle samples, including an increase in the number of regenerative fibers, satellite cells, and fibro-adipogenic progenitor cells (FAPs) and a decrease in the number of slow fibers and smooth muscle cells. Muscle samples from the younger patients with stable mild weakness were characterized by an increase in regenerative fibers, while older patients with moderate and progressive weakness were characterized by loss of muscle fibers and an increase in FAPs. An analysis of the gene expression profile in muscle fibers identified a strong regenerative signature in DMD samples characterized by the upregulation of genes involved in myogenesis and muscle hypertrophy. In the case of FAPs, we observed upregulation of genes involved in the extracellular matrix regeneration but also several signaling pathways. Indeed, further analysis of the potential intercellular communication profile showed a dysregulation of the communication profile in DMD samples identifying FAPs as a key regulator of cell signaling in DMD muscle samples. In conclusion, our study has identified significant differences at the cellular and molecular levels in the different cell populations present in skeletal muscle samples of patients with DMD compared to controls.


Muscular Dystrophy, Duchenne , Humans , Child, Preschool , Muscular Dystrophy, Duchenne/genetics , Dystrophin/genetics , Transcriptome/genetics , Muscle Fibers, Skeletal , Signal Transduction
11.
Neuromuscul Disord ; 33(10): 744-753, 2023 Oct.
Article En | MEDLINE | ID: mdl-37704504

Distal motor neuropathies (dHMN) are an heterogenous group of diseases characterized by progressive muscle weakness affecting predominantly the distal muscles of the lower and upper limbs. Our aim was to study the imaging features and pattern of muscle involvement in muscle magnetic resonance imaging (MRI) in dHMN patients of suspected genetic origin (dHMN). We conducted a retrospective study collecting clinical, genetic and muscle imaging data. Muscle MRI included T1-weighted and T2 weighted Short Tau Inversion Recovery images (STIR-T2w) sequences. Muscle replacement by fat was quantified using the Mercuri score. Identification of selective patterns of involvement was performed using hierarchical clustering. Eighty-four patients with diagnosis of dHMN were studied. Fat replacement was predominant in the distal lower leg muscles (82/84 cases), although also affected thigh and pelvis muscles. Asymmetric involvement was present in 29% of patients. The superficial posterior compartment of the leg, including the soleus and gastrocnemius muscles, was the most affected area (77/84). We observed a reticular pattern of fatty replacement progressing towards what is commonly known as "muscle islands" in 79.8%. Hyperintensities in STIR-T2w were observed in 78.6% patients mainly in distal leg muscles. Besides features common to all individuals, we identified and describe a pattern of muscle fat replacement characteristic of BICD2, HSPB1 and DYNC1H1 patients. We conclude that muscle MRI of patients with suspected dHMN reveals common features helpful in diagnosis process.


Lower Extremity , Muscle, Skeletal , Humans , Retrospective Studies , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Leg , Magnetic Resonance Imaging
12.
Neurol Genet ; 9(5): e200093, 2023 Oct.
Article En | MEDLINE | ID: mdl-37588275

Background and Objectives: Pathogenic variants in the valosin-containing protein (VCP) gene cause a phenotypically heterogeneous disorder that includes myopathy, motor neuron disease, Paget disease of the bone, frontotemporal dementia, and parkinsonism termed multisystem proteinopathy. This hallmark pleiotropy makes the classification of novel VCP variants challenging. This retrospective study describes and assesses the effect of 19 novel or nonpreviously clinically characterized VCP variants identified in 28 patients (26 unrelated families) in the retrospective VCP International Multicenter Study. Methods: A 6-item clinical score was developed to evaluate the phenotypic level of evidence to support the pathogenicity of the novel variants. Each item is allocated a value, a score ranging from 0.5 to 5.5 points. A receiver-operating characteristic curve was used to identify a cutoff value of 3 to consider a variant as high likelihood disease associated. The scoring system results were confronted with results of in vitro ATPase activity assays and with in silico analysis. Results: All variants were missense, except for one small deletion-insertion, 18 led to amino acid changes within the N and D1 domains, and 13 increased the enzymatic activity. The clinical score coincided with the functional studies in 17 of 19 variants and with the in silico analysis in 12 of 19. For 12 variants, the 3 predictive tools agreed, and for 7 variants, the predictive tools disagreed. The pooled data supported the pathogenicity of 13 of 19 novel VCP variants identified in the study. Discussion: This study provides data to support pathogenicity of 14 of 19 novel VCP variants and provides guidance for clinicians in the evaluation of novel variants in the VCP gene.

13.
Eur Heart J ; 44(48): 5064-5073, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-37639473

BACKGROUND AND AIMS: Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterize the cardiac complications of EMD variants. METHODS: Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidences in male and female variant-carriers were determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared with consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS: Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers [mean (SD) ages 33.4 (13.3) and 43.3 (16.8) years, respectively]. Nine (23.7%) males developed MVA and five (13.2%) developed ESHF during a median (inter-quartile range) follow-up of 65.0 (24.3-109.5) months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median (inter-quartile range) age of 58.6 (53.2-60.4) years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank P = .49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank P = .09). CONCLUSIONS: Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease.


Heart Diseases , Heart Failure , Muscular Dystrophy, Emery-Dreifuss , X-Linked Emery-Dreifuss Muscular Dystrophy , Humans , Male , Female , Middle Aged , X-Linked Emery-Dreifuss Muscular Dystrophy/complications , Retrospective Studies , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/complications , Heart Diseases/complications , Muscular Dystrophy, Emery-Dreifuss/complications , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/pathology , Heart Failure/etiology , Heart Failure/complications , Mutation
14.
Neurol Genet ; 9(4): e200084, 2023 Aug.
Article En | MEDLINE | ID: mdl-37440793

Background and Objectives: The prevalence and progression of respiratory muscle dysfunction in patients with limb girdle muscular dystrophies (LGMDs) has been only partially described to date. Most reports include cross-sectional data on a limited number of patients making it difficult to gain a wider perspective on respiratory involvement throughout the course of the disease and to compare the most prevalent LGMD subtypes. Methods: We reviewed the results of spirometry studies collected longitudinally in our cohort of patients in routine clinical visits from 2002 to 2020 along with additional clinical and genetic data. A linear mixed model was used to investigate the factors associated with the progression of respiratory dysfunction. Results: We followed up 156 patients with 5 different forms of LGMDs for a median of 8 years (range 1-25 years). Of them, 53 patients had pathogenic variants in the Capn3 gene, 47 patients in the Dysf gene, 24 patients in the Fkrp gene, 19 in the Ano5 gene, and 13 in one of the sarcoglycan genes (SCG). At baseline, 58 patients (37.1%) had a forced vital capacity percentage predicted (FVCpp) below 80%, while 14 patients (8.9%) had peak cough flow (PCF) values below 270 L/min. As a subgroup, FKRP was the group with a higher number of patients having FVC <80% and/or PCF <270 L/min at initial assessment (66%). We observed a progressive decline in FVCpp and PCF measurements over time, being age, use of wheelchair, and LGMD subtype independent factors associated with this decline. Fkrp and sarcoglycan patients had a quicker decline in their FVC (Kaplan-Meier curve, F test, p < 0.001 and p = 0.02, respectively). Only 7 of the 58 patients with low FVCpp values reported symptoms of respiratory dysfunction, which are commonly reported by patients with FVCpp below 50%-60%. The number of patients ventilated increased from 2 to 8 during follow-up. Discussion: Respiratory dysfunction is a frequent complication of patients with LGMDs that needs to be carefully studied and has direct implications in the care offered in daily clinics. Respiratory dysfunction is associated with disease progression because it is especially seen in patients who are full-time wheelchair users, being more frequent in patients with mutations in the Fkrp and sarcoglycan genes.

15.
J Clin Med ; 12(5)2023 Feb 28.
Article En | MEDLINE | ID: mdl-36902710

The Revised Hammersmith Scale (RHS) is a 36-item ordinal scale developed using clinical expertise and sound psychometrics to investigate motor function in participants with Spinal Muscular Atrophy (SMA). In this study, we investigate median change in the RHS score up to two years in paediatric SMA 2 and 3 participants and contextualise it to the Hammersmith Functional Motor Scale-Expanded (HFMSE). These change scores were considered by SMA type, motor function, and baseline RHS score. We consider a new transitional group, spanning crawlers, standers, and walkers-with-assistance, and analyse that alongside non-sitters, sitters, and walkers. The transitional group exhibit the most definitive change score trend, with an average 1-year decline of 3 points. In the weakest patients, we are most able to detect positive change in the RHS in the under-5 age group, whereas in the stronger patients, we are most able to detect decline in the RHS in the 8-13 age group. The RHS has a reduced floor effect compared to the HFMSE, although we show that the RHS should be used in conjunction with the RULM for participants scoring less than 20 points on the RHS. The timed items in the RHS have high between-participant variability, so participants with the same RHS total can be differentiated by their timed test items.

16.
Phys Ther ; 102(10)2022 10 06.
Article En | MEDLINE | ID: mdl-35932452

OBJECTIVE: The North Star Assessment for limb-girdle type muscular dystrophies (NSAD), a clinician-reported outcome measure (ClinRO) of motor performance, was initially developed and validated for use in dysferlinopathy, an autosomal recessive form of limb-girdle muscular dystrophy (LGMD R2/2B). Recent developments in treatments for limb-girdle muscular dystrophies (LGMD) have highlighted the urgent need for disease-specific ClinROs. The purpose of this study was to understand the ability of the NSAD to quantify motor function across the broad spectrum of LGMD phenotypes. METHODS: Assessments of 130 individuals with LGMD evaluated by the physical therapy teams at Nationwide Children's Hospital and the John Walton Muscular Dystrophy Research Centre were included in the analysis. NSAD, 100-m timed test (100MTT), and Performance of Upper Limb 2.0 assessment data were collected. Psychometric analysis with Rasch measurement methods was used to examine the NSAD for suitability and robustness by determining the extent to which the observed data "fit" with predictions of those ratings from the Rasch model. The NSAD score was correlated with the 100MTT and Performance of Upper Limb 2.0 assessment scores for external construct validity. RESULTS: The NSAD demonstrated a good spread of items covering a continuum of abilities across both individuals who had LGMD and were ambulatory and individuals who had LGMD and were weaker and nonambulatory. Items fit well with the construct measured, validating a summed total score. The NSAD had excellent interrater reliability [intraclass correlation coefficient (ICC) = 0.986, 95% CI = 0.981-0.991] and was highly correlated with the 100MTT walk/run velocity (Spearman rho correlation coefficient of rs(134) = .92). CONCLUSION: Although LGMD subtypes may differ in age of onset, rate of progression, and patterns of muscle weakness, the overall impact of progressive muscle weakness on motor function is similar. The NSAD is a reliable and valid ClinRO of motor performance for individuals with LGMD and is suitable for use in clinical practice and research settings. IMPACT: Recent developments in potential pharmacological treatments for LGMD have highlighted the urgent need for disease-specific outcome measures. Validated and meaningful outcome measures are necessary to capture disease presentation, to inform expected rates of progression, and as endpoints for measuring the response to interventions in clinical trials. The NSAD, a scale of motor performance for both individuals who have LGMD and are ambulatory and those who are nonambulatory, is suitable for use in clinical and research settings.


Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , Humans , Muscle Weakness , Reproducibility of Results , Muscular Dystrophies, Limb-Girdle/genetics , Phenotype
17.
Front Neurol ; 13: 866243, 2022.
Article En | MEDLINE | ID: mdl-35707038

Spinal Muscular Atrophy (SMA) is characterized by muscle atrophy and weakness and has an incidence of 1:11. 000 live births which projects an estimated population in the UK of 650-1,300 affected patients. Standards of Care (SoC) were updated in 2017 and they have been widely adopted as a reference for implementation of care in SMA across the globe. The effectiveness of implementation and adherence to these standards across different countries is unclear. The aim of this study is to describe the experience of individuals with SMA regarding their care in the UK. An online anonymised survey was sent out via patient organizations, the UK SMA Patient Registry, professional networks, and social media to reach across the UK. The survey captured demographic profile, professionals involved in a patient's care, Interventions and access to mobility aids and home adaptations. Participants responded about their access to services and to rate how important each professional and intervention was for their health and wellbeing. One hundred and twenty-eight responses were collected with a median age of 34 years (1-81). Seventy-three percent of participants were adults and 60% men. Overall good access to neurologist (>90%) but limited to nurse specialist (48%) and physiotherapist (57%). Good access to respiratory support was reported but limited for interventions for positioning and bracing and exercise. This survey highlights that access to certain professionals for people with SMA is limited in the UK. Striking differences were noted between pediatric and adult populations. Limited access to care were regularly reported, with half of the study population consistently not accessing full multidisciplinary care. Access to interventions for contracture management were recorded to have significant limitations. Mobility aids and home adaptations are widely available and were also reported as the most valued interventions. Access to nutritional support or speech and language therapy appears only to be available for a small proportion of the participants. Access to respiratory care was good especially in severe forms of SMA. We found pockets of good practice in the UK that align with the SoC. However, access is not equal for adults and children and access to certain professionals is significantly limited.

18.
Brain ; 145(2): 596-606, 2022 04 18.
Article En | MEDLINE | ID: mdl-34515763

Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict a disease's severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 paediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty-seven per cent of the patients had consanguineous parents. Ninety-one per cent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in five patients (21.7%) and four patients (17.4%) required non-invasive ventilation. Sixty per cent of patients were wheelchair-bound since early teens (median age of 12.0 years). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.


Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , Sarcoglycanopathies , Adult , Child , Humans , Muscle Weakness , Muscular Dystrophies/genetics , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Retrospective Studies , Sarcoglycanopathies/genetics , Sarcoglycans/genetics , Sarcoglycans/metabolism
19.
Rheumatology (Oxford) ; 61(4): 1645-1650, 2022 04 11.
Article En | MEDLINE | ID: mdl-34264321

OBJECTIVES: Diagnosing the idiopathic inflammatory myopathies (IIMs) can be challenging as several conditions, including genetic myopathies such as limb girdle muscular dystrophy type R12 (LGMD 2 l, anoctaminopathy) mimic the presentation. Here we describe learning points identified from review of four patients with LGMD 2 l who were initially incorrectly diagnosed with IIM. Our aim is to provide clinicians working in adult rheumatology services with a toolkit to help identify non-inflammatory presentations of myopathy. METHODS: We performed retrospective review of medical notes, laboratory results, muscle imaging and histological findings of four patients with LGMD 2 l who were previously misdiagnosed with IIM. We focussed on clinical presentation and progression, therapeutic agents used and events leading to revision of the diagnosis. RESULTS: Three male patients and one female patient with a mean age of 51 years at presentation were reviewed. In each case, treatment with immunosuppressants, in one case for >15 years, was observed without a clear therapeutic response. All patients were negative for anti-nuclear antibodies and available myositis-associated/specific autoantibodies and associated connective tissue disease features were absent. Prominent fatty infiltration and selective muscle involvement on thigh MRI was found in common. CONCLUSIONS: Adult-onset genetic myopathies, particularly LGMD R12, can mimic IIM. Accurate diagnosis is crucial to avoid the use of potentially harmful immunosuppressive therapies, to allow appropriate genetic counselling and to facilitate involvement in research studies.


Muscular Diseases , Muscular Dystrophies, Limb-Girdle , Myositis , Diagnostic Errors , Female , Humans , Male , Middle Aged , Muscular Diseases/diagnosis , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Myositis/diagnosis
20.
Brain ; 145(6): 2108-2120, 2022 06 30.
Article En | MEDLINE | ID: mdl-34919635

Andersen-Tawil syndrome is a neurological channelopathy caused by mutations in the KCNJ2 gene that encodes the ubiquitously expressed Kir2.1 potassium channel. The syndrome is characterized by episodic weakness, cardiac arrythmias and dysmorphic features. However, the full extent of the multisystem phenotype is not well described. In-depth, multisystem phenotyping is required to inform diagnosis and guide management. We report our findings following deep multimodal phenotyping across all systems in a large case series of 69 total patients, with comprehensive data for 52. As a national referral centre, we assessed point prevalence and showed it is higher than previously reported, at 0.105 per 100 000 population in England. While the classical phenotype of episodic weakness is recognized, we found that a quarter of our cohort have fixed myopathy and 13.5% required a wheelchair or gait aid. We identified frequent fat accumulation on MRI and tubular aggregates on muscle biopsy, emphasizing the active myopathic process underpinning the potential for severe neuromuscular disability. Long exercise testing was not reliable in predicting neuromuscular symptoms. A normal long exercise test was seen in five patients, of whom four had episodic weakness. Sixty-seven per cent of patients treated with acetazolamide reported a good neuromuscular response. Thirteen per cent of the cohort required cardiac defibrillator or pacemaker insertion. An additional 23% reported syncope. Baseline electrocardiograms were not helpful in stratifying cardiac risk, but Holter monitoring was. A subset of patients had no cardiac symptoms, but had abnormal Holter monitor recordings which prompted medication treatment. We describe the utility of loop recorders to guide management in two such asymptomatic patients. Micrognathia was the most commonly reported skeletal feature; however, 8% of patients did not have dysmorphic features and one-third of patients had only mild dysmorphic features. We describe novel phenotypic features including abnormal echocardiogram in nine patients, prominent pain, fatigue and fasciculations. Five patients exhibited executive dysfunction and slowed processing which may be linked to central expression of KCNJ2. We report eight new KCNJ2 variants with in vitro functional data. Our series illustrates that Andersen-Tawil syndrome is not benign. We report marked neuromuscular morbidity and cardiac risk with multisystem involvement. Our key recommendations include proactive genetic screening of all family members of a proband. This is required, given the risk of cardiac arrhythmias among asymptomatic individuals, and a significant subset of Andersen-Tawil syndrome patients have no (or few) dysmorphic features or negative long exercise test. We discuss recommendations for increased cardiac surveillance and neuropsychometry testing.


Andersen Syndrome , Andersen Syndrome/diagnosis , Andersen Syndrome/genetics , Andersen Syndrome/therapy , Electrocardiography , Genetic Testing , Humans , Morbidity , Mutation/genetics , Phenotype
...